757 research outputs found

    Incorporating Forcing Terms in Cascaded Lattice-Boltzmann Approach by Method of Central Moments

    Full text link
    Cascaded lattice-Boltzmann method (Cascaded-LBM) employs a new class of collision operators aiming to improve numerical stability. It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e. central moments, in an ascending order-by-order at different relaxation rates. In this paper, we propose and derive source terms in the Cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version. Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this new formulation are Galilean invariant by construction. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher order terms in velocity space. It is shown that the proposed approach implies "generalization" of both local equilibrium and source terms in the usual lattice frame of reference, which depend on the ratio of the relaxation times of moments of different orders. An analysis by means of the Chapman-Enskog multiscale expansion shows that the Cascaded-LBM with forcing terms is consistent with the Navier-Stokes equations. Computational experiments with canonical problems involving different types of forces demonstrate its accuracy.Comment: 55 pages, 4 figure

    Knudsen Effect in a Nonequilibrium Gas

    Full text link
    From the molecular dynamics simulation of a system of hard-core disks in which an equilibrium cell is connected with a nonequilibrium cell, it is confirmed that the pressure difference between two cells depends on the direction of the heat flux. From the boundary layer analysis, the velocity distribution function in the boundary layer is obtained. The agreement between the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure

    Innovative ultrasound-assisted approaches towards reduction of heavy metals and Iodine in macroalgal biomass

    Get PDF
    The aim of this work was to evaluate the potential of ultrasound (US), alone or in combination with mild heating and/or EDTA towards reduction of As, Cd, I, and Hg content of Laminaria hyperborea. Concentrations of As, Cd, I, and Hg of 56.29, 0.596, 7340, and <0.01 mg kg−1 of dry weight, respectively, were found in L. hyperborea blades. Treatment with US at 50 °C increased approx. 2-fold the amount of As released, although did not affect significantly the content of Cd or I, as compared to control (no US) samples. Reducing the temperature to 8 °C significantly decreased the effect of US, but heating at 80 °C did not cause a significant effect as compared to treatments at 50 °C. On the other hand, treatment with 0.1 N EDTA at 50 °C enhanced the percentage of Cd released by approximately 7-fold, regardless of sonication. In the present work, the combination of US and EDTA at 50 °C for 5 min led to a significant reduction of the As (32%), Cd (52%) and I (31%) content in L. hyperborea, thus improving the product’s safety for consumers

    Pengaruh Sumber Karbon Terhadap Produksi Enzim Inulinfruktotransferase Dari Nonomuraea SP

    Get PDF
    The aims of this research is to produce inulinfructotransferase enzyme with potentially benefit of bacteria Actinomycetes which was isolated from Indonesia soils to produce Difructoanhydride-Ill (DFA III), a compound has physiology activities to enhance calsium absorption of rats. cows and human colons so that the materials can be applied as antiosteoporosis. The processing of inulinfructotransferase enzyme from Nonomuraea sp by usingshakeflask level and study the influence of carbohydrate source were conducted. This enzyme has optimum temperature at 65rtC,higher than optimum temperature which has found before and the activities was stable at 70dc for 20 minutes. So that the enzyme has potentially applicable for industry scale. The results indicated that optimation condition for processing inulinfructotransferase enzyme of Nonomuraea sp : temperature sore. incubation time 48 hours.carbon source of inulin 20 g/L, nitrogen source 5g/L, noyeast extract added, the enzyme activities was 7,3 Unit/ml; However,when medium contains yeast extract 0,2 gIL,the inulinfructotransferase enzyme activity was 14,6 Unit/mL

    Traits associated with the escape strategy are responsible for flash flooding tolerance of rice during the emergence and seedling stages

    Get PDF
    To identify the adaptive traits responsible for flooding tolerance during the initial growth stages of rice, dry seeds of 53 contrasting genotypes were sown in soil and watered normally (control) or submerged with 10 cm of water for 17 days. Subsequently, the plants were kept under normal rice cultivation conditions for a further 7 days. Cluster analysis showed that 53 genotypes were divided into three groups based on emergence date, percentage of plants reaching the water’s surface, maximum coleoptile length, shoot elongation rate during submergence and increases in shoot dry weight after de-submergence. Twelve genotypes were placed in cluster 1 and characterized by fast emergence, rapid coleoptile elongation, and vigorous shoot growth under control and submergence conditions. The genotypes in cluster 1 attained also a higher increase in shoot dry weight at different time of submergence and de-submergence than the genotypes in clusters 2 and 3. A significant correlation was observed between the increase in shoot dry weight and traits related with fast and vigorous shoot elongation and coleoptile. In conclusion, flooding tolerance during initial growth stages were mainly due to major submergence avoidance or escape mechanisms, and crop establishment of direct-seeded rice in flood-prone areas is accomplished by harnessing reserves for fast shoot elongation

    Non-Newtonian Couette-Poiseuille flow of a dilute gas

    Full text link
    The steady state of a dilute gas enclosed between two infinite parallel plates in relative motion and under the action of a uniform body force parallel to the plates is considered. The Bhatnagar-Gross-Krook model kinetic equation is analytically solved for this Couette-Poiseuille flow to first order in the force and for arbitrary values of the Knudsen number associated with the shear rate. This allows us to investigate the influence of the external force on the non-Newtonian properties of the Couette flow. Moreover, the Couette-Poiseuille flow is analyzed when the shear-rate Knudsen number and the scaled force are of the same order and terms up to second order are retained. In this way, the transition from the bimodal temperature profile characteristic of the pure force-driven Poiseuille flow to the parabolic profile characteristic of the pure Couette flow through several intermediate stages in the Couette-Poiseuille flow are described. A critical comparison with the Navier-Stokes solution of the problem is carried out.Comment: 24 pages, 5 figures; v2: discussion on boundary conditions added; 10 additional references. Published in a special issue of the journal "Kinetic and Related Models" dedicated to the memory of Carlo Cercignan

    Crossing barriers in planetesimal formation: The growth of mm-dust aggregates with large constituent grains

    Full text link
    Collisions of mm-size dust aggregates play a crucial role in the early phases of planet formation. We developed a laboratory setup to observe collisions of dust aggregates levitating at mbar pressures and elevated temperatures of 800 K. We report on collisions between basalt dust aggregates of from 0.3 to 5 mm in size at velocities between 0.1 and 15 cm/s. Individual grains are smaller than 25 \mum in size. We find that for all impact energies in the studied range sticking occurs at a probability of 32.1 \pm 2.5% on average. In general, the sticking probability decreases with increasing impact parameter. The sticking probability increases with energy density (impact energy per contact area). We also observe collisions of aggregates that were formed by a previous sticking of two larger aggregates. Partners of these aggregates can be detached by a second collision with a probability of on average 19.8 \pm 4.0%. The measured accretion efficiencies are remarkably high compared to other experimental results. We attribute this to the rel. large dust grains used in our experiments, which make aggregates more susceptible to restructuring and energy dissipation. Collisional hardening by compaction might not occur as the aggregates are already very compact with only 54 \pm 1% porosity. The disassembly of previously grown aggregates in collisions might stall further aggregate growth. However, owing to the levitation technique and the limited data statistics, no conclusive statement about this aspect can yet be given. We find that the detachment efficiency decreases with increasing velocities and accretion dominates in the higher velocity range. For high accretion efficiencies, our experiments suggest that continued growth in the mm-range with larger constituent grains would be a viable way to produce larger aggregates, which might in turn form the seeds to proceed to growing planetesimals.Comment: 9 pages, 20 figure
    corecore